A New, Harder Proof That Continuous Functions With Schwarz Derivative 0 Are Lines

نویسنده

  • J. Marshall Ash
چکیده

The Schwarz derivative of a real-valued function of a real variable F is de…ned at the point x by lim h!0 F (x+ h) 2F (x) + F (x h)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new security proof for FMNV continuous non-malleable encoding scheme

A non-malleable code is a variant of an encoding scheme which is resilient to tampering attacks. The main idea behind non-malleable coding is that the adversary should not be able to obtain any valuable information about the message. Non-malleable codes are used in tamper-resilient cryptography and protecting memories against tampering attacks. Many different types of non-malleability have alre...

متن کامل

Polarization constant $mathcal{K}(n,X)=1$ for entire functions of exponential type

In this paper we will prove that if $L$ is a continuous symmetric n-linear form on a Hilbert space and $widehat{L}$ is the associated continuous n-homogeneous polynomial, then $||L||=||widehat{L}||$. For the proof we are using a classical generalized  inequality due to S. Bernstein for entire functions of exponential type. Furthermore we study the case that if X is a Banach space then we have t...

متن کامل

Everywhere Continuous Nowhere Differentiable Functions

Here I discuss the use of everywhere continuous nowhere differentiable functions, as well as the proof of an example of such a function. First, I will explain why the existence of such functions is not intuitive, thus providing significance to the construction and explanation of these functions. Then, I will provide a specific detailed example along with the proof for why it meets the requireme...

متن کامل

A continuous approximation fitting to the discrete distributions using ODE

The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004